Overview biostimulants

Aad Termorshuizen

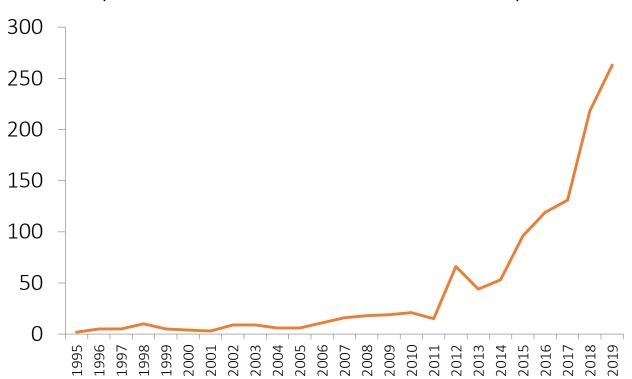
9 januari 2020, Nijkerk, The Netherlands

Who am I?

Aad Termorshuizen

- Specialist soil quality and soilborne plant pathogens
- 20 yr lecturer at Wageningen University
- 10 yr at BLGG/Eurofins and SoilCares Research as scientist
- From 2017 independent advisor (<u>www.soilcrop.nl</u>)

Fertilisers



Biostimulants

Pesticides

Consultancy

publications on biostimulants in Scopus

Contents of presentation

- Legislation see presentation by Harm Smit
- Types of biostimulants
- Highlights:
 - algae, seaweed
 - mycorrhiza
- Link with science
- Conclusions

significance for agriculture

Types of biostimulants

- Plant extracts, e.g. algae and seaweed
- Humic acids, compost tea
- Proteins and amino acids
- Biopolymers, e.g. chitosan, chitine
- Anorganic compounds
- Biofertilisers, e.g. *Bacillus* spp., *Trichoderma* spp., *Pseudomonas* spp. etc. (if not registered as pesticide), symbionts: mycorrhiza, N-symbionts (*Rhizobium, Azotobacter, Azospirillum*)

• Compost (as soil conditioner)

- ✓ application often possible aboveand belowground
- ✓ many products applicable on many crops and soil types

+ combinations, bv.

- Bacillus + Trichoderma + humic acids
- compost + *Trichoderma*
- humic acids + micronutrients
 + seaweed extract

A selection of the claims

- balanced nutrients
- improved soil organic matter content
- strengthens physiological reactions
- improved flowering
- yield increase
- improved root development
- improved tolerance against (a)biotic stress
- increase in populations of "beneficial" micro-organisms
- improved soil structure
- applicable on many crops and soil types

usually a combination of claims

Concise overview biostimulants

- 1. humic acids
- 2. N-rich compounds, e.g. protein hydrolysates and amino acids
- 3. plant extracts, e.g. algae and seaweed
- 4. biopolymers
- 5. anorganic compounds
- 6. fungi, e.g. mycorrhiza and Trichoderma
- 7. bacteria

Biostimulants: 1. humic acids

products

• ranging from compost tea to purified humic acids

effects

- increased soil CEC
- increase P-availability
- effects on plant hormones
- reduction of stress

remarks

- strongly situation-dependent
- effects mainly or only on soils very low in organic matter content
- compare with effects of e.g. compost, straw, etc.

Biostimulants: 2. N-rich compounds

products

- a.o. protein hydrolysates, amino acids, betaines, polyamines, incl. mixtures
- usually from agronomic residues

effects

- modulation of N-uptake
- regulation of TCA-related enzymes (TCA = citric acid cycle)
- reduction of stress from heavy metals (chelating effects)
- increase availability of micronutriënts
- antioxydant effects
- increase soil microbial activity
- increased soil CEC

remarks

- animal hydrolysates are not allowed in the EU
- compare with organic matter amendments, e.g. compost

Biostimulants: 3. Plant extracts

products

• mainly seaweed and algee, purified or not

effects

- increase micronutrient availability
- increased aeration of the soil
- immobilisation of heavy metals
- stimulation of PGPR and antagonists
- hormonal effects (germination of seed)
- antioxydant and antistress effects

remarks

• effects dependent on production method and species

Highlighted: algae and seaweed

a great amount of procucts, difficult to judge

Algal species involved

- Ascophyllum nodosum
- Caulerpa scalpelliformis
- Chlorella ellipsoida
- Durvillea antarctica, D. potatorum
- Ecklonia maxima
- Enteromorpha flexuosa
- Fucus serratus, F. vesiculosus
- Gelidiella acerosa
- Gracilaria corticata, G. salicornia
- Himanthalia elongate
- Hypnea musciformis

- Kappaphycus alvarezii
- Laminaria digitata, L. hyperborean
- *Macrocystis integrifolia, M. pyrifera*
- Padina boergesenii, P.
 gymnospora, P. pavonica
- Sargassum muticum, S. tenerimum, S. wightii
- Spirulina maxima
- Ulva lactuca

REVIEW published: 26 Junuary 2017 doi: 10.3389/pb.2016.02049 Deathr

Biostimulants in Plant Science: A Global Perspective

Oleg I. Yakhin^{1,2*}, Aleksandr A. Lubyanov², Ildus A. Yakhin² and Patrick H. Brown³

Algae: production methods

- acid processing / extraction
- alkaline extraction / hydrolysis / processing
- aqueous extraction
- cell burst
- cell rupture with high pressure treatment
- cold or frozen alkaline and water extractions
- cryoprocessing
- enzyme-assisted extraction (EAE)
- fermentation
- heated alkaline hydrolysis
- microwave-assisted extraction (MAE)
- neutral extraction
- pressurized liquid extraction (PLE)
- supercritical fluid extraction (SFE)
- ultrasound-assisted extraction (UAE)

REVIEV published: 26 January 201 doi: 10.3389/fpls.2016.0204

Oleg I. Yakhin^{1,2*}, Aleksandr A. Lubyanov², Ildus A. Yakhin² and Patrick H. Brown³

¹ Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Russia, ² R&D Compan, Eco Priroda, Ulkundy, Russia, ³ Department of Plant Sciences, University of California, Davis, Davis, CA, USA

Algae: ingredients

- 1-Aminocyclopropane-l-carboxylic Acid (ACC)
- abscisic acid (ABA), alginic acid
- Auxins (IAA, IAAsp, IAAla, IAGly, IALeu, ICA, ILA, IPA, IPia, ICA, N,N-dimethyltryptamine, IAId, iso-indole, 1, 3-dione (N-hydroxy ethylphthalimide), auxin-like substances, phenyl-3-acetic acid (PAA) and hydroxyphenyl acetic acid (OH-PAA))
- Betaines (Glycinebetaine, γ-aminobutyric acid betaine, δ-aminovaleric acid betaine, glycinebetaine, laminine, lysinebetaine, ascophylline)
- Carbohydrates: 1-(2-furanyl) ethanone (mannitol), 5-methyl-2-furcarboxaldehyde (fucoidan), 2-hydroxy-3-methyl-2cyclopenten-1-one (laminarin), diannhydromannitol (mannitol), 1,6-anhydromannopyranose and 1,6anhydromannofuranose (mannitol)
- Cytokinins: zeatin (Z), dihydrozeatin (DHZ), trans-zeatin (tZR), cis-zeatin (cZR), dihydrozeatin riboside (DHZR), isopentenyladenine (iP), isopentenyladenosine (iPR), benzyladenine riboside (BAR), meta-topolin (mT), meta-topolin riboside (mTR), ortho topolin (oT), and ortho-topolin riboside (oTR), cytokinin glucosides, etc.
 Gibberellic acid (GA3), carrageenans
- lipids
- melatonin
- minerals (Na, Ca, Cu, Fe, I, K, Mg, Na, P, S, B, Mn, Zn, Co, potassium oxide
- phosphorus oxide, N, S, Cl, HCO- 3, etc.)
- oligosaccharides
- pepsin
- phenolic compounds: eckol, phloroglucinol, etc.
- polysaccharides
- protein sterols: 22-Dehydrocholesterol, 24-Methylenecholesterol, 24-Methylenecycloartanol, 24-Methylenophenol, 28-Isofucosterol, 5-Dihydroergosterol, Brassicasterol, Campesterol, Cholesterol, Chondrillasterol; Clerosterol, Clionasterol, Codisterol, Cycloartenol, Decortinol, Decortinone, Desmosterol, Ergosterol, Fucosterol, Isodecortinol, Obusifoliol, Ostreasterol, Poriferastenol, Sitosterol; ß-Stitosterol, Stigmasterol, Zymosterol, 14,5-Ketosteroids, 15-Ergostenol; 17-Ergostenol, etc.

Biostimulants in Plant Science: A Global Perspective

Oleg I. Yakhin^{1,2*}, Aleksandr A. Lubyanov², Ildus A. Yakhin² and Patrick H. Brown³ ¹Institute of Biochemistry and Genetics, Ufla Scientific Center, Russian Academy of Sciences, Ufla, Russia, ²R&D Company Eco Pirocia, Uliundy, Russia, ³Department of Plant Sciences, University of California, Davis, Davis, CA, USA

published: 26 January 2 doi: 10.3389/tols 2016.02

Bodemkwaliteit & Plantenpathogenen

Algae: mechanisms and effects (1)

- increase nutrient absorption and fertilizer efficiency
- nutrient uptake
- uptake of Cu, Ca, K and Mg
- macro- and microelements content
- assimilation of N, C, and S
- could reduce the fertilizers
- efficient water uptake
- auxin-, cytokinin-, gibberellin-like activity
- modulation of phytohormones
- regulation of gene expression
- increase photosynthetic efficiency
- photosynthetic pigments (chlorophyll, carotenoids)
- total protein concentrations, amino acid, betaines, carbohydrate content, ascorbic acid
- nutrient concentrations
- increase metabolites including phenolic compounds
- up-regulation of bio-synthetic enzymes
- enhance antioxidant activity.
- enhance biosynthesis of non-enzymatic compounds
- delay senescence
- reduce transpiration
- enhance stomatal conductance
- change of metabolism
- alter of root architecture
- modulation of root exudates
- activate the mechanisms of strengthening cell walls

REVIEW published: 26 January 2017 doi: 10.3389/tols.2016.02049

> Check for applation

Biostimulants in Plant Science: A Global Perspective

Oleg I. Yakhin^{1,2*}, Aleksandr A. Lubyanov², Ildus A. Yakhin² and Patrick H. Brown³

¹Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Russia, ²R&D Company Eco Priroda, Ulkundy, Russia, ³Department of Plant Sciences, University of California, Davis, CA, USA

Algae: mechanisms and effects (2)

- decrease rate of transpiration
- sensitivity of the plants to water deficiency
- resistance to frost, insect and pathogen attack, disease and pests
- enhance locally plant immunity against viruses
- reduced virus infection
- reduction in root-knot nematode infestation
- against salinity stress, water stress
- induce improvement of plant growth under sea water stress
- tolerant to iron deficiency
- increase #of fruits per plant and size of fruit
- improdved fruit and, crop yield, fruit quality
- development of a vigorous root system and improved growth
- increase in fresh weight, grain weight and yield components
- root formation
- improved growth characters (length, fresh, dry weight) of shoots and roots, quality of the plants
- stimulate plant growth
- induce rooting

Journal of Applied Phycology Volume 31, Issue 6, 1 December 2019, Pages 3759-3776

Methods of analysis for the in vitro and in vivo determination of the fungicidal activity of seaweeds: a mini review (Review)

O' Keeffe, E. ⊠, Hughes, H., McLoughlin, P., Tan, S.P., McCarthy, N. 🝳

Department of Science, Eco-Innovation Research Centre, Waterford Institute of Technology, Waterford, Ireland

REVIE published: 26 January 20 doi: 10.3389/fpls.2016.020

Biostimulants in Plant Science: A Global Perspective

Oleg I. Yakhin^{1,2*}, Aleksandr A. Lubyanov², Ildus A. Yakhin² and Patrick H. Brown³

¹ Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Russia, ² R&D Company Eco Princia, Ulkundy, Russia, ³ Department of Plant Sciences, University of California, Davis, Davis, CA, USA

Research seaweed extracts

TABLE 1 List of extracts manufactured from A. nodosum biomass that were reported to improve plant growth.

			reported to http://www.gronnin			
S. No.	Extract	Crop	Function	References	Application	# publications
1	GA14® (Goemar, France)	Spinacia oleracea	Foliar spray improved total fresh biomass	Cassan et al., 1992		in painteatione
2	Maxicrop® Original	Tomato	Higher chlorophyll content in sprayed plants	Whapham et al., 1993		
3	Maxicrop®	Capsicum annuum	Improved yield and quality	Eris et al., 1995	с ·,	10
4	Goemar [®]	Citrus unshiu	Early maturation of fruit	Fornes et al., 1995	fruit	10
5	A. nodosum extract	Kiwi fruit	Improved fruit growth, weight, and maturation	Chouliaras et al., 1997	in one	ŦO
	A. nodosum extract	Tomato, dwarf French bean, wheat, barley,	Enhanced leaf chlorophyll level		chinach	C
		maize			spinach	6
6	Acadian® (Acadian Seaplants)	Vitis vinifera	Improved yield and fruit quality	Norrie et al., 2002		
7	Acadian® (Acadian Seaplants)	Poa pratensis	Improved shelf life and transplant rooting	Zhang et al., 2003	tomato, sweet pepper	3
8	Maxicrop [®] , Proton [®] , Algipower [®]	Vitis vinifera	Improved copper uptake of grapevine	Turan and Köse, 2004	tornato, sweet pepper	5
9	Goemar®	Clementine Mandarin	Increased productivity and yield	Fornes et al., 2002	atrougharmy	r
		and Navelina Orange			strawberry	3
10	A. nodosum extract	Arabidopsis thaliana	Improved plant growth by modulation of concentration and localization of auxin	Rayorath et al., 2008	, aarn rang good	n
11	A. nodosum extract	Hordeum vulgare	Induced gibberellic-acid-independent amylase activity in barley and promoted seed germination	Rayorath et al., 2008	corn, rape seed	Z
12	Goëmar BM 86®	Apple	Improved the fruit quality of apple and have high nitrogen content	Basak, 2008	onion, been, carrot, cabbage,	1
13	Acadian [®] Marine Plant Extract Powder (AMPEP)	Kappaphycus striatum	AMPEP improves micro-propogation	Hurtado et al., 2009		
14	A. nodosum extract	Olea europaea	Showed increased tree productivity and improved their nutrition status and oil quality parameters	Chouliaras et al., 2009	clover, grass	
15	Alge®	Citrullus lanatus	Application of extract showed increased growth parameters and yield responses	Abdel-Mawgoud et al., 2010		
16	Actiwave®	Strawberry	Increases fruit yield and quality and acts as iron chelator	Spinelli et al., 2010		
17	Acadian® (Acadian Seaplants)	Spinacia oleracea	Enhances phenolic antioxidant content of Spinach	Fan et al., 2011		
18	AMPEP	Ulva lactuca	Reduces ionic liquid induced oxidative stress in Ulva lactuca	Kumar et al., 2013		
19	A. nodosum extract	Medicago sativa	Improves root colonization of rhizobial symbionts	Khan et al., 2012		
20	A. nodosum extract	Strawberry	Improved plant growth, fruit quality and microbial growth	Alam et al., 2013		
21	Super Fifty [®] , Ecoelicitor [®]	Lettuce; Oilseed rape	Enhanced plant growth and tolerance to biotic and biotic stresses	Guinan et al., 2012		
22	Acadian® (Acadian Seaplants)	Spinacia oleracea	Improved yield and nutritional quality	Fan et al., 2013		
23	Acadian® (Acadian Seaplants)	Spinacia oleracea	Improves phenolics and antioxidant content of spinach	Fan et al., 2013		
24	Alga Special (AS)	Vitis vinifera	Improved vegetative growth	Popescu and Popescu, 2014	Ascophyllum nodosum-Based	
25	AZAL5	Brassica napus	Promotes plant growth and nutrient uptake	Jannin et al., 2013	Biostimulants: Sustainable	
26	AlgaeGreen®	Brassica oleracea	Enhanced biosynthesis of secondary metabolites	Lola-Luz et al., 2013	Applications in Agriculture for the	
27	Acadian® (Acadian Seaplants)	Spinacia oleracea	Preharvest ANE application enhanced post-harvest storage quality of spinach	Fan et al., 2014	Stimulation of Plant Growth, Stress Tolerance, and Disease Management	
28	Acadian® (Acadian Seaplants)	Carrot	Promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity	Alam et al., 2014	Publo Shedi Shukisi Emily Grace Mantin', Mohd Adir, Sruti Bajcai', Alan T. Critchleys and Balakrishnan Prithkingi*	
29	Stella Maris™	Calibrachoa hybrida	Increased biosynthesis of secondary metabolites and enhanced antibacterial and antifungal properties of <i>C. hybrida</i> extract	Elansary et al., 2016a		
	A. nodosum extract	Vitis vinifera	Improved growth, yield, berry quality attributes, and leaf nutrient content of grapevines	Sabir et al., 2014		
30	Premium liquid seaweed	Allium cepa	Improved vegetative growth and yield of onion	Hidangmayum and Sharma, 2017		
31	Seaweed extract	Zea mays	Promotes root morphology and plant nutrition	Ertani et al., 2018		
32	Acadian® (Acadian Seaplants)	Vitis vinifera	Foliar spray has a positive effect on ripening dynamics and fruit quality	Frioni et al., 2018		
33	Rygex [®] , Super fifty [®]	Solanum lycopersicum	Increased plant growth and fruit quality and mitigates salinity stress in tomato plants	Di Stasio et al., 2018		
34	Seaweed extract	Spinacia oleracea	Improved growth, quality, and nutritional value of spinach grown under drought conditions	Xu and Leskovar, 2015		Aad Termorshuizen Consultancy
35	Seasol®	Fragaria ananassa	Increased growth response of strawberry root	Mattner et al., 2018		Bodemkwaliteit &

Plantenpathogenen

Article

Biostimulants and Microorganisms Boost the Nutritional Composition of Buckwheat (*Fagopyrum esculentum* Moench) Sprouts

- 14-day-old plants
- cultivated in soilless environment

A Commercial Extract of Brown Macroalga (*Ascophyllum nodosum*) Affects Yield and the Nutritional Quality of Spinach *In Vitro*

Di Fan , D. Mark Hodges , Alan T. Critchley & Balakrishnan Prithiviraj

- in vitro
- experiment duration 21 d

Biostimulants: 4. Biopolymers

products

- chitin from shrimp and insect industry
- chitosan is deacetylated chitin

effects

- increase plant resistance/immunity (chitosan)
- effects on soil antagonists (chitins)

remarks

- effects vary
- costly

Biostimulants: 5. Anorganic compounds

products

• with Al, Co, Na, Se en/of Si

effects

- variable, often stress-lowering and/or stimulating plant growth
- effects of Se on nutritional value of grass is well-known

Biostimulants: 6. Fungi

products

• a.o. mycorrhiza, Trichoderma

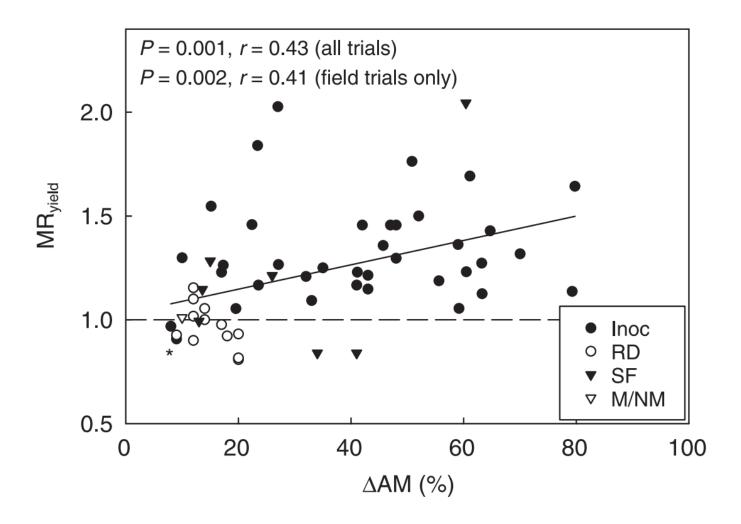
effects

- mycorrhiza: effect on P-availability, disease suppressive, plant growth stimulating, improved drought tolerance
- *Trichoderma*: stimulating plant growth, but also antagonist

Highlighted: mycorrhiza in agriculture

Two methods to manage mycorrhiza

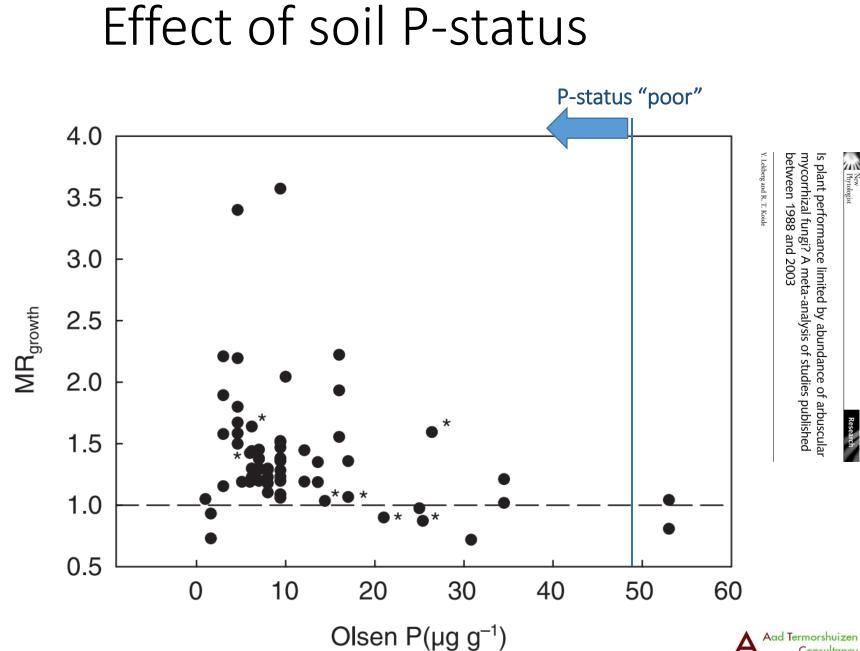
• inoculation with mycorrhiza product


or

• cultural measures:

measure	practice	feasibility
reduced soil tillage	current trend	++
refrain from growing non- mycorrhiza crops	don't crop cabbage (incl. crucifer-manure crops), sugar beet	
continuous cultivation with mycorrhiza crops	mixture (grass/clover), cereals/clover followed by grass	+/
aim at reduced soil-P	P-AL<20, P _{CaCl2} <1, P-Olsen<50	

Stimulation of crop yield by mycorrhiza


Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003

. Lekberg and R. T. Koid

Phytologist

Consultancy Bodemkwaliteit & Plantenpathogenen

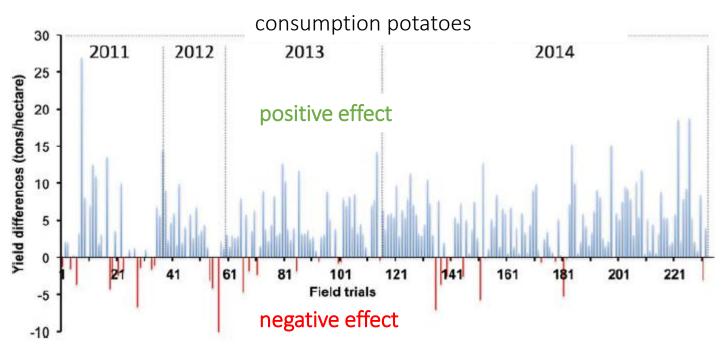
Aad Termorshuizen Consultancy Bodemkwaliteit & Plantenpathogenen

Tansley review

Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops

Megan H. Ryan¹ and James H. Graham² 2018 ¹School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; ²Department of Soil and Water Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA

- Literature way too optimistic
- Errors in studies
- "A small body of rigorous research only sometimes reports a positive impact of high colonisation on crop yield, even under P limitation"
- Variation between experiments by interaction between environment (incl. soil) and crop and mycorrhiza species effects
- Soil colonisation of the mycorrhizal fungus is a primary bottle-neck


Successful application of mycorrhiza

- situations where mycorrhiza is absent (with other factors being optimal, including low soil-P) (e.g. irrigated dessert soil)
- cropping plants having exoting mycorrhiza (e.g. *Eucalyptus*)
- chemically polluted soils (trees)
- possibly enhancing rooting of seedlings and/or cuttings

but:

Effect of *Rhizophagus irregularis* DAOM 197198

231 farmer's experiments with/without inoculation with mycorrhiza (70 spores/seed potato) – locations: Canada, US, Switzerland, France, per field no reps & no info on P-levels, avg. yield: 40 t/ha

Biostimulants: 7. Bacteria

Biostimulanten: 7. Bacteriën

products

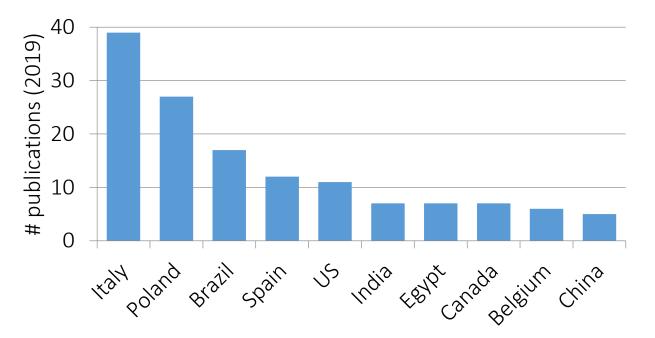
- N-binding symbiontic: *Rhizobium*
- N-binding free-living: a.o. *Azosporillum, Azotobacter*
- other, a.o. *Bacillus, Lactobacillus, Pseudomonas*
- extension (incl. fungi) via art. 42.4 FPR

effects

- N-binding (soy)
- stress reduction
- effects on root growth and architecture

remarks

- For soy, co-inoculation with *Rhizobium* is necessary
- Effect of free-living and endophytic N-binding bacteria is unclear


lantenpathoaener

Response from science

Response from science

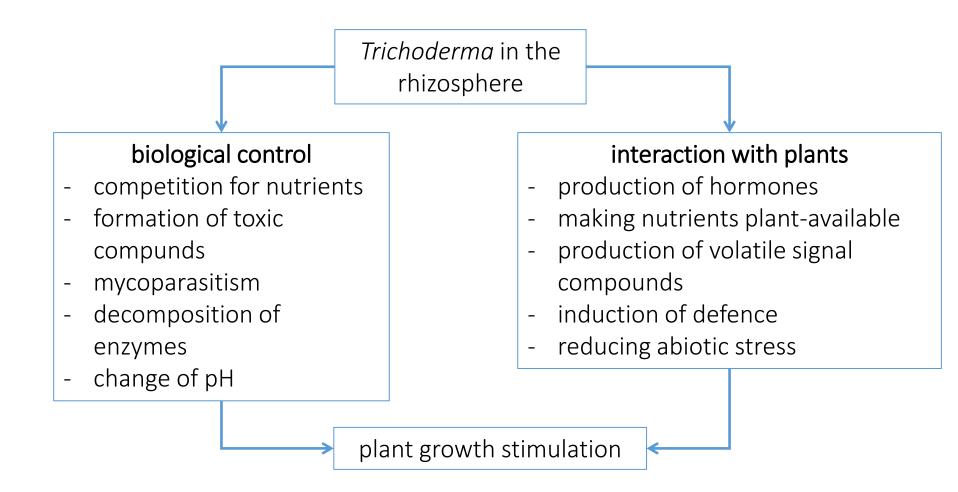
- Most research from S-Europe
- Possible sub-optimal conditions play a role in these countries (drought, salinity)

 Little work from NL/Belgium except micro-organismens (PGPR, biocontrol)

Science: small inventory from Wageningen

Wietse de Boer, Ken Giller, Ep Heuvelink, Thom Kuyper, Corné Pieterse, Joeke Postma, Jos Raaijmakers, Sander Schouten, Paul Struik

- Not able to judge because background info is lacking
- Effects disappear outside the experimental environment; too many claims; effects can be clear for seedlings
- Difference biostimulant / antagonist sometimes not so large
- More effective *Rhizobium*-strains by selection (2x) (soy)
- AMF: effects not predictable, varying from neutral to positive
- Cultivated micro-organisms have difficulties to colonize the soil
- Under optimal growing conditions no additional effect
- Current research:
- Tailor-made bioconsortia are promosing, incl. breeding for this (NWOproject Zwaartekracht)
- Importance of volatile compounds produced by micro-organisms
- Endophytische micro-organisms

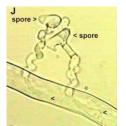


Difference between science and practice

- Science finds nice effects, usually in an artificial environment (e.g. sterile soil or *Arabidopsis*)
- Practice markets it too quickly

Example: Trichoderma

Trichoderma


- After a lot of research, some strains are now registered as biocontrol agents, e.g. *Trichoderma harzianum* T22
- Now, other Trichoderma's are sold as biostimulant
- What do we know about these Trichoderma's?
 - if they also have biocontrol properties, then they are by definition not a biostimulant
 - would proving on <u>absence</u> of biocontrol properties be needed?

Multiple effects

or, when is something a pesticide?

- *Trichoderma*, combining the properties of biocontrol agent and biostimulant
- Can (e.g.) *Trichoderma* be marketed only as biostimulant?
- Verticillium biguttatum

Journal of Applied Phycology

Volume 31, Issue 6, 1 December 2019, Pages 3759-3776

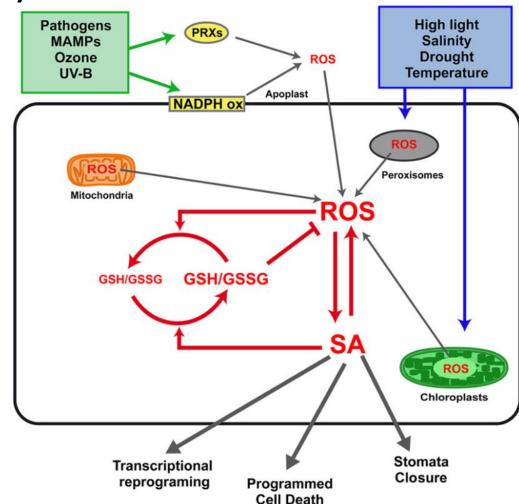
Inputlijst

De Skal inputlijst is een publieke lijst van commerciële producten die gebruikt mogen worden in de biologische landbouw. De lijst beperkt zich tot meststoffen, bodemverbeteraars, gewasbeschermingsmiddelen en gerelateerde producten, kortweg "inputs". Het gebruik van inputs is toegestaan wanneer andere teeltmaatregelen onvoldoende blijken. Voor gebruik van de middelen op de Skal inputlijst gelden de in Nederland van toepassing zijnde gebruiksvoorschriften. Laatste update: 16-12-2019

Informatie over Verticillium biguttatum. Dit product mag gebruikt worden in de Biologische Landbouw in Nederland.

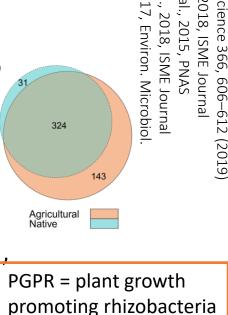
	Productnaam	Verticillium biguttatum	
-	Categorie	Meststoffen, compost, groeimedia en biologisch afbreekbare materialen	
	Subcategorie	Micro-organismen	

- Combined properties (pesticide/biostimulant) also possible for:
 - mycorrhiza
 - algae
 - ...?


Methods of analysis for the in vitro and in vivo determination of the fungicidal activity of seaweeds: a mini review (Review)

O' Keeffe, E. ⊠, Hughes, H., McLoughlin, P., Tan, S.P., McCarthy, N. 🍳

Department of Science, Eco-Innovation Research Centre, Waterford Institute of Technology, Waterford, Ireland


Multiple effects: Stress from different sources runs partially along the same pathways

Aad Termorshuizen Consultancy Bodemkwaliteit & Plantenpathogenen

Some scientific results

- Immunity effects leading to growth stimulation occurring in 42% of rhizosphere isolates (of *A. thaliana*; n=48).
- In modern agriculture, there is no impoverishm in rhizosphere bacterial diversity
- PGPR can have multiple effects (Fe, S, biolcontrol hormones, secundary metabolites); plant
 pathogens can induce PGPR
- Consortia of micro-organisms can act synergistically
- Rhizosphere composition is plant, cultivar and situation dependent
- Crosstalk above/belowground

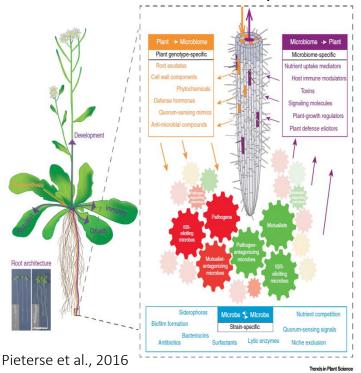
arrión

Yu et

https:/

/doi.org

'10.1016/j.cub.2019.09.015



Science vs. practive?

Science

Testing principles:

- usually on economically unimportant test plants
- often on unnatural substrates
- with overdosis
- short-duration experiment

Praktice

It has to work:

- on agricultural important crops
- on natural soil
- at economically viable doses
- leading to a robust positive effect

Practice shortlist

- Effects situation-dependent: strong interaction between crop, biostimulant and environment (weather, soil type, moisture)
- Therefore, results are strongly field-dependent
- Test producten on own field
- See <u>www.soilcrop.nl/news</u> for more details on this
- There are advisors who can assist with this

Conclusions

- There are many biostimulants on the market
- How they will adapt to the Fertiliser Product Regulation is yet unclear
- Currently, applications mainly in horticulture and fruit farming
- For arable farming little evidence for useful applications of biostimulants
- Claims on label must be verifiable
 - how will this be checked?
- Is NL lagging behind?
- Difference biostimulant / pesticide; multiple effects
- What if biostimulant controls a disease/pest while it is not being claimed? Fair playing field necessary
- Considerable distance between practice and science

Thank you for your attention!

Aad Termorshuizen

this presentation can be downloaded at www.soilcrop.nl

thanks to Wietse de Boer, Ken Giller, Ep Heuvelink, Thom Kuyper, Corné Pieterse, Joeke Postma, Jos Raaijmakers, Sander Schouten & Paul Struik

